Appello A -26/6/2019

N.B. • Indicare in cima all'elaborato da consegnare: nome, cognome, n. matricola (o n. documento).

- Il punteggio totale è in centesimi; il punteggio di ogni singolo esercizio è indicato tra parentesi quadrate.
- È vietato: parlare, scambiarsi informazioni; consultare testi, appunti, etc.; l'uso del cellulare, calcolatrici, etc.
- Le risposte vanno sempre motivate chiaramente e sinteticamente! Risposte senza giustificazioni non danno punteggio.
- ullet Per una valutazione positiva è necessario avere un punteggio ≥ 8 al primo esercizio.

Es 1 [Pt. 15] (i) Calcolare parte reale e immaginaria di $\left(\frac{1-i}{1+i}\right)^3$.

- (ii) Trovare tutte le soluzioni in \mathbb{C} della equazione $z^6 = 64$.
- (iii) Trovare tutte le soluzioni in \mathbb{C} della equazione $z=\bar{z}^3$.

Es 2 [Pt. 15] Trovare tutte le funzioni intere che verificano $|f(z)| = (x^2 + y^2)e^x$, dove z = x + iy.

Es 3 [Pt. 25] Sia
$$f(z) := \frac{z+1}{z-1} \in \Omega := \{z : \text{Im } z > 0\} \setminus \{|z| \le 1\}$$
. Trovare $f(\Omega)$.

Es 4 [**Pt 20**] Calcolare
$$\int_{-\infty}^{\infty} \frac{(x-1)\cos x}{x^2 - 2x + 2} dx$$
.

Es 5 [Pt. 25] Trovare l'espansione di Laurent (in potenze di z^n) in $\{|z| > 2\}$ di

$$f(z) = \frac{1}{(z^2 - 1)(z^2 + 4)}.$$